Stuart McErlain-Naylor

Lecturer in Sport and Exercise Biomechanics

Loughborough University


Dr Stuart McErlain-Naylor is a Lecturer in Sport and Exercise Biomechanics at Loughborough University, UK. He is currently Vice President (Publications) of the International Society of Biomechanics in Sports.

Alongside a passion for engaging the wider audience in all things sports biomechanics, Stuart’s research interests include the application of wearable technology and computer simulation methods to investigate the human body’s response to sporting impacts.

Stuart organised and hosted the Sports Biomechanics Lecture Series , and is Social Media Editor for the journal Sports Biomechanics.

To discuss collaboration or consultancy, just send a mesage. For the best things I read each month, as well as publication, presentation, and project updates, please subscribe to my monthly newsletter.


  • musculoskeletal modelling
  • wearable technology
  • sporting technique
  • flywheel exercise


  • PhD in Sports Biomechanics, 2018

    Loughborough University

  • Postgraduate Certificate in Academic Practice (Fellow of the Higher Education Academy), 2020

    University of Suffolk

  • BSc in Sport and Exercise Sciences, 2013

    Loughborough University

Content and Resources

  • Publications: View and search open access versions of my publications and related resources

  • Lectures: 28 free expert lectures on sports biomechanics, as well as tutorials and research presentations

  • Resources: Recommended free resources for every stage of the research process

  • Newsletter: A monthly update of the best things I’ve read recently, as well as publications and resources

Research Projects

Impact Modelling and Monitoring

Applying wearable technology and computer simulation to investigate the body’s response to sporting impacts

Cricket Biomechanics

The biomechanical determinants of cricket batting/bowling performance


The biomechanical determinants of badminton jump smash performance

Flywheel Exercise

Flywheel (isoinertial) eccentric overload exercise induced post-activation performance enhancement

Most Recent Publications

On-field rehabilitation in football: Current knowledge, applications and future directions

The effects of bowling lines and lengths on the spatial distribution of successful power-hitting strokes in international men’s one-day and T20 cricket

This study examined 503 power-hitting strokes that resulted in the maximum of 6-runs being scored in international men’s one-day and T20 cricket. Chi-Squared analyses were conducted to determine if performance and situational variables were associated with the distribution (direction) of aerial power-hitting strokes. Results revealed that bowling length, bowling line, bowler type and powerplays were all significantly (p < 0.001) associated with ball-hitting distribution. Post-hoc analysis of the standardised residuals revealed that greater than expected 6ʹs were scored behind square and were associated with short-pitched bowling, fast bowling and the power-play. Similarly, bowling the half-volley length and the outside off line resulted in greater than expected 6ʹs on the off-side. The results suggest that bowlers should try to avoid offering width outside the off stump as well as bowling the half-volley and short-pitched lengths as these bowling lines and lengths present batters with greater opportunities to score maximum runs. Fast bowling is revealed to be more susceptible to power-hitting strokes than spin bowling. Conversely, batters may wish to target the areas behind square or on the off-side for opportunities to score maximum runs, and they should look to take full advantage of the powerplay field restrictions.

Comparing biomechanical time series data across countermovement shrug loads

The effect of load on time-series data has yet to be investigated during weightlifting derivatives. This study compared the effect of load on the force–time and velocity–time curves during the countermovement shrug (CMS). Twenty-nine males performed the CMS at relative loads of 40%, 60%, 80%, 100%, 120%, and 140% one repetition maximum (1RM) power clean (PC). A force plate measured the vertical ground reaction force (VGRF), which was used to calculate the barbell-lifter system velocity. Time-series data were normalized to 100% of the movement duration and assessed via statistical parametric mapping (SPM). SPM analysis showed greater negative velocity at heavier loads early in the unweighting phase (12–38% of the movement), and greater positive velocity at lower loads during the last 16% of the movement. Relative loads of 40% 1RM PC maximised propulsion velocity, whilst 140% 1RM maximized force. At higher loads, the braking and propulsive phases commence at an earlier percentage of the time-normalized movement, and the total absolute durations increase with load. It may be more appropriate to prescribe the CMS during a maximal strength mesocycle given the ability to use supramaximal loads. Future research should assess training at different loads on the effects of performance.

Variability of ball release properties and pitch length accuracy in cricket fast bowling

Accurate ball pitch length in cricket fast bowling is potentially achieved from a redundant combination of four ball release parameters. Yet, it is unknown how parameter co-variations affect pitch accuracy. This study investigates whether pitch length variance is determined by coordinated ball release parameter co-variability. Twelve fast bowlers performed 18 trials at a target length and ball kinematics were captured from an indoor 3D camera setup. Multi-linear regression analysis showed that the four release parameters accounted for 79% of pitch length variance, where vertical velocity variance accounted for the most variance. When each release parameter was independently shuffled across trials, a pitch length model showed no indication of coordinated co-variability between input parameters. Therefore, pitch length accuracy was achieved by independent control of vertical velocity.

Elite female cricket power-hitting batting technique differs between fast and spin bowling deliveries

The purpose of this study was to determine if elite female cricket batters’ body or bat kinematics differed when facing fast or spin bowling in a power-hitting task. Six elite female cricket batters completed a straight drive power hitting task against both fast and spin bowling, captured by a 3D motion capture system. Select kinematic variables were analysed using Visual 3D software. Elite female batters may use the increased movement time afforded by the slower spin bowling speed to enhance bat-ball impact, bat speed and launch angle through reducing distance from the pitch of the ball to impact, and increasing thorax-pelvis separation (X-Factor) and top wrist ulnar deviation compared with facing fast bowling.