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Abstract: The identification of optimum technique for maximal effort sporting tasks is one of the
greatest challenges within sports biomechanics. A theoretical approach using forward-dynamics
simulation allows individual parameters to be systematically perturbed independently of potentially
confounding variables. Each study typically follows a four-stage process of model construction,
parameter determination, model evaluation, and model optimization. This review critically evaluates
forward-dynamics simulation models of maximal effort sporting movements using a dynamical
systems theory framework. Organismic, environmental, and task constraints applied within such
models are critically evaluated, and recommendations are made regarding future directions and best
practices. The incorporation of self-organizational processes representing movement variability and
“intrinsic dynamics” remains limited. In the future, forward-dynamics simulation models predicting
individual-specific optimal techniques of sporting movements may be used as indicative rather than
prescriptive tools within a coaching framework to aid applied practice and understanding, although
researchers and practitioners should continue to consider concerns resulting from dynamical systems
theory regarding the complexity of models and particularly regarding self-organization processes.

Keywords: torque-driven; optimization; parameters; evaluation; dynamical systems theory; con-
straints; self-organization; performance; individual; complexity

1. Introduction

The identification of optimum technique for maximal effort sporting tasks, especially
specific to an individual, has been called the “holy grail” of sports biomechanics and is
one of the greatest challenges within the discipline [1]. Sports biomechanics investiga-
tions have mostly adopted a reductionist perspective to identifying characteristics (e.g.,
anthropometrics, strength, technique) associated with a performance outcome [2,3]. The
inferential statistical approaches used typically either compare group means (e.g., elite
vs. sub-elite, pre vs. post-intervention) or assess (intra- or interindividual) correlations
between biomechanical characteristics and the performance outcome [3]. Application of
conclusions drawn from interindividual comparisons/relationships to any specific indi-
vidual is limited [4,5]. Likewise, intraindividual experiments are dependent upon the
individual’s current technique, which may not be optimal [2].

Unlike experimental studies, a theoretical analysis using computer simulation allows
complete control of the testing environment, in which individual factors can be system-
atically isolated and perturbed independently of potentially confounding variables [4].
In forward-dynamics simulation modeling, the forces driving a mathematically modeled
system are specified, and the resulting motion is calculated. This enables parameters to be
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perturbed in search of an “optimal” movement solution for the specific individual given
various constraints and assumptions [6,7]. The aim of this paper is to provide a critical re-
view of the literature related to forward-dynamics simulation models of individual-specific
maximal effort sporting movements. A secondary aim is to provide recommendations
regarding future directions and best practices when using such approaches in sports
biomechanics research or applied sports settings.

1.1. Forward-Dynamics Simulation Models

The development and application of forward-dynamics simulation models typically
involve four stages: (1) model construction; (2) parameter determination; (3) model eval-
uation; (4) model application [8–13]. The first three stages are often an iterative process
until the model incorporates sufficient complexity to adequately represent the real physical
system (i.e., each time model complexity is changed, the number of individual-specific
parameter values to be determined may alter). Early models typically generated equations
of motion from first principles using Newton’s Second Law [14,15], although software pack-
ages utilizing Kane’s method [16] to model the dynamical system have become increasingly
popular. To run the model, an iterative method (e.g., Euler method or Runge–Kutta) is used
to advance the model dynamics over specified time intervals [17]. Model outputs comprise
time histories of all calculated variables (e.g., whole-body orientation, linear and angular
momentum, joint kinematics and/or kinetics, and possibly joint reaction forces). Once a
model has been evaluated, typically by assessing how closely it can reproduce the recorded
performances of an individual [9], it can be applied to investigate cause and effect relation-
ships and optimal individual performance [12,13,18–21]. Given the number of assumptions
and constraints necessary to model the human body mathematically and computationally,
these must be critically reviewed in relation to the true human dynamical system.

1.2. Dynamical Systems Theory

In human movement science, dynamical systems theory emphasizes that individual
movement patterns are determined by the process of self-organization [22] and the interac-
tion of organismic, environmental, and task constraints [23]. Self-organization processes
are those where a pattern at the global level of a system emerges solely from interactions
among the lower-level components, using only local information and without reference
to the global pattern or imposition by an external ordering influence [24,25]. In human
movement, feedback loops, multiple interactions, stochasticity and randomness lead to
emergent behaviors, multi-stability and robustness [24]. The combined effects of constraints
and self-organization processes channel and shape the outcome of the movement and,
ultimately, the performance [23,26,27]. Organismic constraints reside within the human
system and can be subdivided into structural and functional organismic constraints. Envi-
ronmental constraints are external to the human system, and task constraints are specific
to the task being performed (e.g., its rules and objectives) [25,26,28]. Such constraints
restrict the possible configurations that a complex system’s many degrees of freedom
can adopt [29]. In a forward-dynamics simulation, these constraints are mathematically
modeled using Newtonian mechanics and assumptions to create a dynamical system (a
system of mathematical functions that describe the time dependence of a point or points in
geometric space).

While model evaluation provides evidence that a model can replicate a recorded
movement pattern, it does not guarantee that any subsequently optimized movement
patterns are valid solutions [30]. This has led dynamical systems theorists to debate the
efficacy of forward-dynamics simulation models to establish cause and effect relationships
or predict optimum technique [1,2]. While forward-dynamics simulation models have
been examined holistically using a dynamical systems framework [1], the mathematical
representation of constraints and self-organization processes [22,23] are yet to be reviewed.
These representations will be critical to the accuracy of any predicted optimal technique
for maximal effort sporting movements. This paper will therefore review the four stages of
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development and application of forward-dynamics simulation models and their potential
to predict individual-specific optimal technique for maximal effort sporting movements
using a dynamical systems theoretical framework.

2. Review of Model Construction and Parameter Determination
2.1. Organismic Constraints

Within dynamical systems, each organismic constraint can be categorized as a struc-
tural or functional constraint [23]. Structural constraints tend to be physical constraints
that remain relatively constant between each simulation (e.g., height, body mass and com-
position, segmental inertia properties, joint range of motion, muscle properties), while
functional constraints tend to refer to the time-dependent behavioral aspect of an individual
and potentially change within or between simulations (e.g., motivation, fear, focus) [25].

2.1.1. Structural Constraints
Model Complexity

As a rule of thumb, forward-dynamics simulation models have remained as simple
as possible while maintaining sufficient complexity to answer the research question [4].
For instance, Pandy contrasted simple and complex models of walking to show that a
simple model (an inverted double pendulum) was able to identify basic features of mus-
cle function during gait, but that a more complex model (3-dimensional, 10-segment,
23-degree-of-freedom musculoskeletal model) was required to discern the functional roles
of specific muscles in the movement [31]. Similarly, for jumping, Alexander was able to use
a planar two-segment, single muscle model to estimate optimum touchdown conditions
for the plant leg in running jumps that were in close agreement with competitive perfor-
mances [14]. To realistically predict muscular control during jump performances required
a three-dimensional model consisting of ten segments and 54 muscle actuators [32] or
17 segments and 46 muscle actuators [33].

It is often claimed that the simpler the model, the easier it is to quantify the contri-
bution of its features to the observed effect [14,34]. However, in reality, the complexity
of forward-dynamics simulation models are more often limited by computational power
and the ability to construct scientifically robust constraints. Forward-dynamics simula-
tion models investigating maximal effort sporting movements have, therefore, typically
represented relatively simple planar movements such as bilateral vertical jumps where rel-
atively little error is introduced by the assumptions of planar movement [9,10] or bilateral
symmetry [12,35,36]. Three-dimensional forward-dynamics models have been restricted to
angle-driven models [37] or muscle-driven models with muscle parameters either scaled
from values in the literature [32,33] or determined via optimization [38,39]. This has limited
their application to neuromuscular coordination, internal loading, and injury risk [38–42],
rather than the optimization of maximal effort sporting performance.

Anatomical Constraints

Most existing whole-body forward-dynamics simulation models are based on a sys-
tem of linked rigid bodies. Each rigid segment typically represents a body segment and is
defined using four inertial parameters: length, mass, mass center location and moment of
inertia. To determine accurate individual-specific inertial parameters, regression equations
or geometric models have most frequently been used. The regression approach scales
parameters from cadaver segments based on simple anthropometric measurements [43–45].
The accuracy of this approach is dependent on the similarity of morphology between
the cadavers used and the individual being modeled, which is often limited given the
athletic individuals under investigation. Alternatively, geometric models are used to
mathematically estimate segmental inertia parameters from a number of anthropomet-
ric measurements per segment given an assumed geometric segment shape of uniform
density [46–48]. The most frequently used method—that of Yeadon—uses 40 geometrical
shapes requiring 95 anthropometric measurements (34 lengths, 41 perimeters, 17 widths
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and 3 depths) [47]. Errors of 2.3% have been reported for total body mass [47], with seg-
mental densities the only values assumed from literature. While segmental densities can be
adjusted within this method to ensure correct total body mass, this may not avoid errors
within individual segments. The estimation of segmental inertia parameters may be im-
proved through scanning methodologies such as dual-energy X-ray absorptiometry [49,50].
All necessary segmental inertia parameters can be obtained via a combination of areal
density and the mass associated with each component (e.g., bone mineral, lean tissue, fat
tissue) [50]. These methods may be particularly feasible in future investigations, given the
small number of individuals typically participating in simulation studies. Alternatively,
gold-standard scanning methods can be used to develop regression methods [51,52] or
evaluate existing geometric models [53–57].

The connections between rigid segments (considered to represent the skeleton) are
typically modeled as frictionless one degree of freedom “pin” joints where the distal and
proximal ends of two connecting segments are joined at a common point. This assumption
is a simplification of reality and has been particularly questioned at the shoulder, where
motion can occur at four different joints [4]. To overcome this for giant circles on the high
bar in gymnastics, a simple viscoelastic representation has been used [58]. Alternatively, a
complex finite element model was required to investigate individual muscle contributions
to the movement of the shoulder [59]. While the effects of pin-joint assumptions are yet to
be systematically investigated within whole-body forward-dynamics simulation models,
researchers should recognize that the use of pin joints may neglect the energy-dissipative
properties of in vivo compliant joint structures [60–62].

When modeling sporting movements involving an impact, it has become increasingly
common to represent the “wobbling mass” within body segments with large amounts of
soft tissue using a second rigid segment attached to the first (representing underlying bone)
via viscoelastic springs at the proximal and distal ends [63]. This represents post-impact
soft tissue displacement by enabling the wobbling mass to displace relative to the rigid
segment and has been shown to reduce loading on the system by up to 50% compared
to an equivalent rigid model [64]. The calculation of separate inertia parameters for rigid
and wobbling segments requires information on the ratio of bone to soft tissue, typically
obtained from cadaver studies [65], although this can be obtained for specific individuals
via dual-energy X-ray absorptiometry [52]. If values are used from the literature, this ratio
can be scaled to the individual using total body mass and percentage body fat [64,66,67].
The viscoelastic springs connecting the rigid segments representing the bone and wob-
bling mass elements were originally represented as linear springs [68], but more recently,
damped nonlinear passive springs have been used [69]. As it is not possible to measure
the viscoelastic stiffness and damping parameters for these springs, they are often deter-
mined using a model driven by experimentally recorded kinematics of the individual.
The parameters are varied within set bounds by an optimization algorithm to minimize
kinetic and whole-body kinematic differences between simulated and experimental per-
formances [66]. The maximum permissible wobbling mass displacement within shank,
thigh and trunk segments during this approach have been 5.0 cm, 7.5 cm and 11.0 cm, re-
spectively [13,36,60]. These numbers may be excessive, however, with recent experimental
research recording shank and thigh soft tissue displacement during drop landings of up
to 1.4 cm relative to the underlying bone [70]. Furthermore, the frequently cited source
for trunk wobbling mass displacement limits is a study on viscera displacement during
hopping [71]. The viscera represents only one portion of the trunk wobbling mass, with
the remaining component (including skeletal muscle and adipose tissue) likely displacing
to a lesser degree than the maximum 8 cm reported for the viscera in that study. It is
additionally unlikely that peak displacements of the various soft tissue elements within the
trunk will occur synchronously. The excessive compliance required within wobbling mass
representations likely compensates for lack of compliance elsewhere in these models. One
possibility is that it reduces the effect of neglecting joint compression when modeling pin
joints between adjacent body segments [60]. Finally, more representative wobbling mass
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constraints may be achieved via viscoelastic parameters that vary as a function of the local
actuator activation levels or force–velocity characteristics [72–74], and realistic oscillation
durations should be ensured.

Strength Constraints

The force exerted by muscle has predominately been modeled in forward-dynamics
simulation models using a muscle–tendon complex to divide the force-producing capabili-
ties of muscle into a contractile component and two elastic elements: a series elastic element
and a parallel elastic element [75]. Adopting the muscle–tendon complex approach requires
mathematical relationships for each component so that the maximum force-generating
capabilities of the individual can be calculated.

While Huxley combined the sliding filament and cross-bridge theories to express
the contractile force during muscle contraction at a microscopic level [76], the research
focus of forward-dynamics simulation models has seen a macroscopic approach adopted
to mathematically modeling the force produced by the whole contractile component as a
function of its length, rate of shortening or lengthening, and “neural” activation [77]. The
force–length relationship has been modeled as a quadratic function [9,78] or bell-shaped
curve [79], representing the ascending limb, plateau region, and descending limb [80,81].
In the concentric phase of the force–velocity relationship, tetanic force decreases hyperboli-
cally with increasing rate of shortening to approach zero at the maximum rate of shortening
(modeled as a rectangular hyperbola) [82–84]. Eccentrically, the maximum force increases
rapidly to around 1.4–1.5 (tetanic) [85] or 1.1–1.2 (voluntary) [86] times the isometric value,
with the increasing rate of lengthening and then plateaus for higher speeds (modeled as an
inverted hyperbola) [84]. These differences between tetanic and voluntary contractions are
due to reduced neural drive under eccentric and low concentric maximum voluntary con-
tractions [87–89]. The tetanic force–velocity relationship has been corrected for voluntary
contractions via a differential activation function increasing from a depressed level at high
eccentric velocities to full activation at high concentric velocities [79,84,90]. Discontinuity
in the transition from eccentric to concentric [82] has been incorporated within the eccentric
representation using predictions of the eccentric to concentric slope ratio [76,84,91,92].

The series elastic component has commonly been modeled as a non-damped spring,
with force expressed as an increasing function of its length and with a slack length below
which no force can be generated [35]. The accuracy of series elastic component parameters
has been shown to affect model performance [93], necessitating realistic elastic compliance.
The force produced by the parallel elastic component has been assumed to be dependent
on the contractile component length but independent of muscle activation [94]. Linear [95],
parabolic [96], and exponential [97] functions have all been used to represent the parallel
elastic component, although it has often been disregarded [8,9] due to it having an assumed
minimal effect during functional joint ranges of motion [98].

The application of structural constraints based on the muscle–tendon complex within
forward-dynamics simulation models of maximal effort sporting movements have followed
two alternative paths: muscle-driven models and torque-driven models. Muscle-driven
models incorporate the effect of each muscle individually using the muscle–tendon com-
plex representation. Although muscle-driven models have been widely used to investigate
the function and contributions of individual muscles to different movements [99], their
most frequently cited limitation is the difficult selection of realistic individual muscle
parameters. Individual-specific muscle parameters, which are required for each component
of each muscle–tendon complex, are difficult to determine non-invasively, whereas relying
on data from the literature results in parameters that are not specific to any individual.
Nonetheless, advances have been made in the scaling of musculo–tendon parameters such
as optimal fiber length and tendon slack length for individual-specific models [100–102].
The application of muscle-driven models to investigating individual-specific maximal
effort sporting movements is limited at high movement velocities [103] since the optimal
performance of these movements is likely to be sensitive to variation in the strength capa-



Appl. Sci. 2021, 11, 1450 6 of 20

bilities of the musculature, as reported in jumping simulations [104]. This is particularly
relevant if predicting individual-specific optimal technique is the aim of the research.

Torque-driven forward-dynamics simulation models use torque generators to apply
the net effect of all muscles acting across a joint, using a rotational muscle–tendon complex.
To achieve realistic joint kinematics and activation dynamics, models have incorporated
separate agonist and antagonist (e.g., flexor and extensor) torque generators. This allows
for co-contraction, during impact landings, for example [36]. Due to the force–velocity char-
acteristics, co-contraction of flexors and extensors with net-zero joint torque at touchdown
leads to increasing extensor torque and decreasing flexor torque as the joint flexion velocity
increases. These considerations are important in any activity requiring rapid changes in
net joint torque.

Studies using torque-driven simulation models have typically focused on the global
performance resulting from the joint torques and kinematics rather than on the role
and contribution of individual muscles. Where joint reaction forces are of interest, the
individual-specific joint torque can instead be applied as a single “lumped” linear muscle
at a specified moment arm [105–107]. A major advantage of torque generators is that
individual-specific strength parameters can be readily obtained using an isovelocity dy-
namometer [11,79,84,108], providing assurance that torques exerted at each joint angle
and velocity within any predicted optimal technique are realistic for the individual. This
process involves collecting maximal voluntary joint torque data of an individual working
with maximal effort against a crank moving at a constant angular velocity over a range
of joint angles [79]. The data are then used to determine parameters for each torque gen-
erator’s contractile component as well as indirectly for the series elastic component. The
contractile component torque profile is determined using an optimization algorithm to
vary each parameter within the function (i.e., force–length and force–velocity relationships)
between physiological upper and lower bounds identified from the literature, minimizing
the difference between measured and calculated joint torques [79,109,110]. The series
elastic stiffness is calculated using maximal dynamometer measures [35], assuming a 4%
tendon stretch [111] in combination with muscle, tendon and moment arm lengths from
the literature [112].

Forward-dynamics simulation models of maximal effort sporting movements have
predominately adopted monoarticular representations, where the calculated contractile
component torque function is based solely on the kinematics of the primary joint [79]. This
assumes the kinematics at secondary proximal or distal joints have a negligible effect and
ignores any effect of biarticular muscles [110], which have been shown in muscle models
to influence performance [95]. Developing this method further, Lewis et al. developed a
biarticular representation of maximal voluntary ankle plantar flexor torque (primary joint:
ankle; secondary joint: knee) [113]. This was reported to be a more accurate representation
than an existing single-joint function, with weighted root mean square differences against
a measured maximum torque of 3% rather than 19% [113]. The authors concluded that
a biarticular representation of ankle plantar flexor torque is necessary for torque-driven
simulation models where the knee is flexed by more than 40◦. Similarly, knee flexor and
extensor torques expressed as a function of kinematics at both the knee (primary joint) and
hip (secondary joint) were more accurate than a monoarticular function at secondary hip
angles other than that used during knee monoarticular dynamometer measurements [114].
Monoarticular torque actuators at the hip may overestimate maximal flexion torque and
underestimate maximal extension torque with the knee extended, compared to biarticular
representations [115].

An alternative approach to determining contractile and series elastic component
parameters have been via optimization during the model evaluation phase [11]. For
example, the isometric strength parameter within a surrogate torque profile from an elite
male gymnast was varied to match two recorded performances by a different athlete in
the takeoff phase of springboard diving [11]. This approach assumed maximum activation
during the recorded performances, and so prevented greater activation in subsequent
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optimizations. Due to limitations in the accuracy of strength parameters, this approach
should be reserved for situations where individual-specific strength measurements are
not feasible.

Despite the advantages of torque-driven models, this approach mostly [116,117]
restricts individual-specific forward-dynamics simulation models to two-dimensions. At
present, a technique for determining and describing individual-specific maximal torque
profiles at joints such as the hip and shoulder collectively about three axes (e.g., flexion-
extension, abduction-adduction, internal-external rotation) has not been established. The
advantage of torque-driven models over muscle-driven models—that individual-specific
maximal strength parameters can be determined in vivo—is therefore only true for two-
dimensional representations. This has resulted in a divided approach to methodological
advancement in the simulation modeling community: incorporating effects of nonplanar
movements by increasing the complexity of torque-driven models [118]; or improving the
individual-specificity of parameters within muscle-driven models [100–102,119].

Range of Motion Constraints

To prevent joint angles exceeding anatomical limits, passive restorative torques have
commonly been applied at the extremes of the range of motion [10,13,120,121]. The specific
approach used has included passive elastic joint moments via an exponential model [120]
in triple-jumping [10]. For passive restorative torques limiting shoulder flexion in the hand-
spring somersault vault, Yeadon et al. fit a similar function [122] to wrist and hip extension
isovelocity data [121]. Finally, a viscoelastic spring has been used to incorporate elbow
hyperextension in cricket fast bowling, with stiffness and damping parameters determined
via an optimization algorithm to match recorded performances [13,123]. Scaling parameters
during model evaluation may be the most appropriate way to attempt parameter individu-
alization, given the potentially injurious nature of experimentally recording passive elastic
restorative torques. Nonetheless, range of motion constraints must be incorporated to avoid
unrealistic optimal movement solutions. Methods in which restorative constraints ramp
up (rather than employing hard limits) allow integration continuity within the iterative
methods used to run the simulation models [124].

2.1.2. Functional Constraints
Muscle Activation Constraints

In forward-dynamics simulation models, time-dependent constraints are required
to mimic the role of the action potential and regulate the activation of each muscle or
torque generator incorporated within the system. Typically, a time-dependent function is
employed where activation varies on a scale from 0 (no activation) to 1 (maximal activation).
This function is multiplied by the maximum voluntary muscle force (muscle-driven) or
joint torque (torque-driven) available at each time point, based on the kinematic joint
conditions, to determine the force or torque exerted. Movements within forward-dynamics
simulation models are initiated and controlled via parameters within a function governing
the activation profile of each muscle or torque actuator. This enables activation timings
to be varied within realistic bounds (e.g., guided by literature or electromyography) to
optimize performance within individual-specific strength capabilities [4].

While a simple “bang-bang” or “on–off” approach to activation profiles has been
adopted [95,125–127], instantaneous changes in activation result in unrealistically fast rates
of force development. This is a limitation as the optimal performance of sporting move-
ments has been shown to be sensitive to muscle activation rise times [32,128]. More recently,
a ramped activation method has been employed, utilizing and varying a limited number
of activation level rise and fall onsets, rates and magnitudes [9,35,36]. Future simulation
of more complex tasks may require more sophisticated muscle activation constraints than
have previously been used.
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Joint Kinematic Constraints

Where strength is not a limiting factor in a movement, joint angle time histories have
sometimes been used as drivers for forward-dynamics simulation models, with the result-
ing motion specified by the whole-body mass center and orientation kinematics. Examples
include aerial phases of high jumping [129], trampolining [37], and diving [130]. Where
strength may influence performance, constraints have occasionally limited joint torques
within angle-driven models to prevent unrealistic movements [58,131]. In instances where
this approach is deemed suitable, angle-driven models benefit from the ease of control and
superior computational speed compared with muscle-driven or torque-driven approaches,
as well as potentially avoiding the need for realistic individual-specific strength parameters.

Joint-angle time histories have also been used to drive specific joints within mostly
torque-driven forward-dynamics simulation models of maximal effort sporting movements,
particularly where actuator strength is not a limiting factor and the kinematics at the joint
are considered to have a negligible effect on model outcomes [10,13]. While it is possible
to manipulate the joint angle-time histories within optimization procedures, this is not
recommended as the joint angles, and associated torques within any optimized solution
may not be feasible [13].

Planar Constraints

An obvious limitation of planar approaches is the introduction of errors due to any
out-of-plane movement. A common assumption of planar simulation models is that the
bilateral hip and shoulder joint centers are coincident (i.e., left and right joints share
a common joint center in the plane of the model). While this assumption reduces the
number of linked segments required, it fails to incorporate non-sagittal plane rotations of
the pelvis and torso. Any such rotations would cause the hip and shoulder joint center
projections to become non-coincident in the sagittal plane [118]. While this approach
has been deemed acceptable for models of running and jumping [60,66,68,126,132], it has
limited the accuracy of the predicted ground reaction forces and distal end-point kinematics
in cricket fast bowling [118]. Felton et al. overcame this, enabling non-coincident hip and
shoulder joint centers by driving the length and orientation of massless pelvis and shoulder
segments (connecting the right and left joint centers) using experimentally recorded time
histories [118]. To incorporate lateral side-flexion, the length of the torso plus head segment
was also driven using experimentally recorded individual-specific time histories while
adjusting segmental inertia parameters for the change in length [133]. This novel solution
allows some out of plane rotations to be modeled within a largely planar simulation
model, avoiding the need for experimentally challenging estimation of three-dimensional
individual-specific strength constraints [34].

2.2. Environmental Constraints
Constrained Interactions with External Surfaces

The simplest method for modeling interactions between body segments and external
surfaces such as the ground or sports equipment has been a hinge joint, enabling rotational
but not translational movement [134]. However, this method cannot facilitate the nonzero
initial velocity of an impact with an external surface. While a hinge joint may be appropriate
for a stationary foot-ground contact or hand-held object, alternative solutions are required
for more complex interactions involving translation between segment and external surface.

The most common solution to represent interactions with external surfaces in forward-
dynamics simulation models has been to generate ground reaction forces via viscoelastic
springs at a finite number of locations. This approach has been used to model specific
elastic structures, including the heel pad [69], foot-tumble track interface [8], and hand-
high bar interface [15], as well as general foot-shoe-ground interfaces [10,13,66]. The
constraint complexity has ranged from damped linear springs [8] to highly nonlinear
equations [135], and from less than three contact points [35,66] to as many as 66 during
heel-toe running [135]. To ensure the horizontal ground reaction force decays to zero at
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the same time as the vertical force, viscoelastic spring horizontal force functions have been
expressed as a function of the same spring’s vertical force [66].

As an alternative to viscoelastic springs, a frictional solution also has been used to
generate horizontal ground reaction forces. Within this approach, the horizontal force
is defined as a function of the vertical force and the horizontal velocity of the contact
point [136]. Dynamic and static friction has been combined in a model of handspring
straight somersault vaulting in gymnastics, with the transition between models at a speci-
fied tangential velocity [137]. This combined method was adopted to replicate the visually
observed sliding of hands across the vault surface prior to static friction. The two-state
approach was compared to more complex pseudo-Coulomb friction, reporting similar
results as well as faster simulation and optimization times.

Since it is not always feasible to measure the viscoelastic or frictional coefficients for
each point of contact with an external surface, the parameters are often determined using
a similar process to that for wobbling mass viscoelastic parameters (with all viscoelastic
parameters often determined simultaneously). The model is driven using experimentally
recorded kinematics, with the unknown parameters varied within set bounds by an opti-
mization algorithm to minimize kinetic and whole-body kinematic differences between
simulated and experimental performances [66]. The magnitude of compliance permitted is
restricted using penalties within the optimization process cost function. While maximum
deformations of 11.5 mm and 12.7 mm have been reported experimentally at the shoe sole
and human heel pad, respectively [138], simulation viscoelastic foot-ground interfaces
have been allowed up to 56 mm of compliance, not only at the heel but also at the toe
and metatarsophalangeal joint [60]. This increased compliance likely compensates for the
lack of compliance elsewhere in the body, such as within the medial longitudinal foot
arch [139,140], joint structures [61,62], or vertebra [141]. The effects of foot-ground compli-
ance limits on the ability of a whole-body forward-dynamics simulation model of triple
jumping to match experimentally recorded performances and ground reaction forces were
previously investigated [60]. It was concluded that an unrestricted model is appropriate for
simulating kinematic performance, but compliance is required elsewhere in the link system
(e.g., within joint structures) to accurately calculate internal forces. This may also improve
the timing of modeled elastic wave transmission [60], which is typically instantaneous in
rigid systems, but not in vivo [142].

2.3. Task Constraints

Application of forward-dynamics simulation models to predict individual-specific
optimum technique has been mostly limited to “closed” skills, where environmental and
task constraints remain relatively constant [1,143]. Constraints relating to the task being
represented by the forward-dynamics simulation model are often incorporated using
penalty functions within optimization algorithms [10,12,21,110,129]. Importantly, penalty
functions should ramp-up, rather than utilizing “all or nothing” penalties, increasing the
likelihood of optimization algorithms converging to global maxima or minima (depending
on the cost function), which must not incur any penalties. Examples have included linear,
exponential, and logarithmic ramped penalty functions. Task constraints often involve the
ability to perform subsequent movements, which may or may not be simulated. This has
included kinematics linked to the ability to regrasp the bar in gymnastics [129], landing
orientation for a subsequent phase of the triple jump [10,21], board clearance in diving [12],
and bar clearance in high jump [110]. Constraints representing the sporting laws of the
movement have also been included, such as ensuring the elbow in cricket bowling does
not extend by more than 15 degrees between the instant of a horizontal upper arm and
ball release [13,109]. Secondary performance outcomes have also been constrained within
acceptable limits while optimizing for primary outcomes (e.g., constraining ball landing
location while optimizing for ball release speed) [13,109].
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2.4. Self-Organization Processes

The application of self-organization processes within forward-dynamics simulation
models of maximal effort sporting movements has been limited. This has predominately
been due to difficulty in measuring and establishing realistic mathematical constraints.
One such process, “intrinsic dynamics”, describes the preferred nodes of coordination
or coordination tendencies that exist (often spontaneously or as a result of its previous
activity) in a movement system at the onset of learning [144]. Although these attractors
have been observed in bimanual coordination tasks [145–147], the greater degrees of
freedom in sporting movements makes this methodologically challenging [1], and the
incorporation of such pre-existing information within simulation models presents a further
challenge. The greatest influence of intrinsic dynamics may be in determining the likelihood
of an individual adopting and reliably reproducing any theoretical optimum movement
solution [1]. This may be dependent upon both the stability of the attractor corresponding to
the individual’s current technique and its proximity within the dynamic attractor landscape
to that corresponding to the theoretical optimum technique [1,2,22,147,148].

One related factor which has been incorporated into forward-dynamics simulation
representations of optimum performance, albeit without the incorporation of intrinsic
dynamics, is the stability of the predicted movement pattern. Given that inherent in-
traindividual variability in movement and activation patterns prevents recurrence of the
same exact movement, the optimal movement pattern predicted by a forward-dynamics
simulation model should be robust to perturbations [149] and not simply a single greatest
one-off performance. Recognizing this, Hiley and Yeadon manipulated the quintic splines
used to angle-drive their simulation of the upstart on even bars [150]. Each simulation
within their optimization was repeated 1000 times with turning points of the angle-time
histories varied according to experimentally recorded intraindividual variation [151]. The
movement solution deemed optimal was the one which maximized success within this
noisy environment. A similar approach has subsequently been used to quantify the margin
for error in movement timing [152,153], as well as the effect of constraints such as strength
and variability on margin for error [154]. Applying this approach to muscle or torque
actuator activation timings could enable inherent movement variability to be included
within the optimization process of muscle-driven and torque-driven forward-dynamics
simulation models of maximum effort sporting movements [124].

3. Review of Model Evaluation

A limitation of many simulation models is an unknown degree of accuracy in model
outputs [3,155]. Before any simulation model can be used to answer research questions
and infer conclusions, it is necessary to evaluate the model [3,9,30,155]. Evaluation against
experimental performance data given the same initial conditions can ensure that the
model is a sufficiently accurate representation of the activity and mechanical system
being modeled [9,35,60,118]. Researchers should be aware that this only confirms that
the model can generate a movement pattern to recreate the recorded performance and
does not guarantee that any subsequently optimized movement solution is possible by the
individual [30].

Model outputs have been evaluated against real performances (by the same individual
being modeled) using optimization algorithms to minimize a score or cost function, often
a weighted mean of differences (e.g., kinetic and kinematic parameters that the model
should match) [4]. This process enables quantification of errors and/or the effects of any
inherent assumptions, both of which must be considered when analyzing model outputs
to inform future research, scientific knowledge, or applied practice. Forward-dynamics
simulation models have been considered satisfactory representations of the modeled
sporting movement when the evaluated simulation score or cost is less than 10% [4,9,156]
or ideally less than 5% [10,11,13,35]. Accepted differences have typically been greater when
including kinetics within the cost function compared to when kinematics alone have been
considered [10,60].
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When deriving the cost function and a satisfactory magnitude of difference, the
intended application of the model should be considered [4]. Just as with statistical inference
in experimental sports biomechanics studies [157], all parameters and methodologies used
in a theoretical approach should be justified. To ensure the validity of the evaluation
process, future researchers may look to pre-register, or at least specify within the study, the
cost functions to be used and the criteria required for successful evaluation [158]. This will
reduce the possibility for the modeling equivalent of “‘p-hacking” [159,160], where cost
functions or criteria are adjusted until “satisfactory” scores are achieved.

Theoretical optimum individual-specific movement solutions and performance out-
comes should also be evaluated anecdotally to ensure the performances are within bounds
deemed realistic [13]. This process should also seek to prevent extrapolating the model
beyond the range of situations in which it has been evaluated and in which accuracy of the
model constraints are known [4,30]. For this purpose, it has been suggested to evaluate
the model using experimental data from an elite performer capable of producing close to
optimal performances [4] and ideally using different experimental trials to the ones any
parameters may have been determined from [156].

4. Review of Model Application

Post-evaluation, forward-dynamics simulation models of maximal effort sporting move-
ments have been used to investigate alternative techniques [10,19], quantify the contribution
of various factors to performance [21], identify performance limiting factors [8,13,124], quan-
tify the sensitivity of performance to various factors or ‘rate limiters’ [12,18–20], and identify
the optimum technique for an individual [12,13]. In addition. they have been applied to
facilitate a greater understanding of aspects of motor control contributing to whole-body
movement [18,130,161,162]. These insights into the mechanics of sports techniques would not
be possible from experimental observations.

The research questions above have all been addressed by running multiple simula-
tions with different inputs. To identify an optimum solution for any criteria, an objective
function or performance score must first be defined. This function is then maximized
or minimized by varying specified model inputs within realistic pre-determined limits
using optimization algorithms such as simulated annealing [163] or genetic algorithm [164].
Alternative optimization approaches such as direct collocation optimal control [165–167]
have been utilized more frequently in the muscle-driven model literature and may en-
hance computational speed. If attempting to predict optimum performance, the objective
function must represent the task objective of the modeled activity. This has been a simple
one-parameter function (e.g., maximizing jump height [124]) or multiple parameter func-
tions (e.g., minimizing joint torque and joint torque change, while maximizing success in
the presence of movement variability in the upstart of gymnastics [150]). In the example of
this multiple parameter functions in gymnastics, the optimizations based on minimizing
joint torques diverged from an elite gymnast’s movement, whereas maximizing success
given inherent movement variability generated a solution close to the gymnast’s move-
ment [150]. This highlights the need for researchers to consider the true nature of task
objectives when defining optimization criteria. It is likely any true optimum technique for
an individual is dependent on a combination of factors, including spatial and temporal
accuracy considerations, robustness to variation from internal or external sources, and
musculoskeletal loading, and so these factors should be considered in future optimization
cost functions.

5. Discussion

Since 1987 when Baumann argued that “if biomechanics is not capable of incorporat-
ing more of the essential anatomical and neurophysiological characteristics of the human
body, then it does not deserve its prefix ‘bio’ and it will not arrive at its real goals” [168]
(p. 57), the representation of organismic, environmental, and task constraints within
forward-dynamics simulation models has substantially increased in complexity. Due to
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technological advances, not only is it much easier to collect accurate and individual-specific
data, improvements in computational processing power enable far more complex repre-
sentations to be incorporated within dynamical systems. This has primarily led to the
development of organismic anatomical and strength constraints, as well as environmental
constraints governing interactions between the body and external objects. The incorpora-
tion of task constraints has remained relatively unchanged, with ramped penalty functions
preferred to an “all or nothing” approach. Although neurophysiological constraints re-
garding muscle activation and voluntary rather than tetanic force representations have
been developed, the incorporation of self-organizational processes representing movement
variability and intrinsic dynamics remains limited.

Modeled anatomical constraints have improved from representations of the body
as a system of pin joint linked rigid segments [14,35] to incorporating wobbling masses
connected using nonlinear viscoelastic springs [10,13,64]. This has increased the ability
of forward-dynamics simulation models to recreate experimental ground reaction forces
and responses to impacts [63,64], albeit not entirely [60]. Although this method enables
soft tissue displacement, future advancements may facilitate more realistic displacement
magnitudes and damping periods [60,70,71]. Additionally, the inclusion of compliance
within joint structures [61,62] may facilitate more accurate predictions of ground reaction
forces, internal forces, and elastic wave transmission in sporting movements with great
impact forces [60,142].

Representation of strength constraints within forward-dynamics simulation models
has also improved. The development of monoarticular [79], and more recently biarticu-
lar [113], functions describing the force-generating capabilities of contractile components,
as well as representations of the series elastic component as a linear spring [35], have
enabled rotational muscle–tendon complexes to represent the net effect of the muscles
at each joint. This has further enabled individual-specific strength parameters to be in-
corporated within planar forward-dynamics simulation models [79], although difficulties
determining accurate and individual-specific strength parameters for three-dimensional
models remain. Considerable increases in the potential applications of forward-dynamics
models will be achieved through either individual-specific maximal muscle parameters
or three-dimensional torque functions for contractile elements at joints with substantial
three-dimensional contributes to performance (e.g., hip and shoulder). Until then, planar
models are likely to evolve to incorporate effects of nonplanar rotations through the novel
application of planar constraints [118].

More minor developments have occurred for the environmental constraints repre-
senting interactions with external surfaces. While the use of springs at various contact
points has remained fairly constant, the functions governing spring stiffness and damp-
ing [8,66,135], as well as realistic compliance constraints [60], have been explored. Improved
representation of compliance elsewhere in the system [60] will likely enable more realistic
constraints [138] at the foot-ground interface in future simulation models.

The lack of self-organization processes applied within forward-dynamics simulation
models is a cause of discussion regarding their efficacy to predict individual-specific opti-
mal technique [1]. While effects of movement variability have been investigated [150], their
incorporation within torque-driven simulation models has been sporadic. This process
should be utilized in future torque-driven models since individuals do not reproduce iden-
tical movement patterns for a repetitive task [149], and so predicted optimal movement
patterns must be robust to perturbations in activation timings. The optimum movement
solution must therefore be the one that maximizes success within a noisy environment. Cap-
turing and representing the intrinsic dynamics of preferred coordination nodes [144,148]
will be more challenging. These tendencies are shaped by multiple factors, including
previous experiences and environmental influences, which are currently extremely difficult
to measure and incorporate within forward-dynamics simulation models [1]. This remains
the main limitation of individual-specific optimal technique predictions from a dynamical
systems theory perspective [1]. If an accurate method of measuring and representing these
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processes is found and determined to permanently limit the availability or efficacy of
potential movement patterns of an individual, then this should be incorporated within
future forward-dynamics simulation models where possible.

Forward-dynamics simulation models have been considered useful as an investigatory
tool to observe cause and effect relationships, where the effect of manipulating one variable
can be determined while controlling all others [1]. The cause and effect relationships
determined can be used to understand potential factors generally limiting performance in
a hypothetical individual. This is preferable to “in general” observations derived experi-
mentally from a group of individuals since cause and effect can be confidently inferred,
and the potential for interindividual relationships that do not reflect intraindividual rela-
tionships is avoided [3]. Compared to this approach, using forward-dynamics simulations
to predict individual-specific optimal techniques for maximal effort sporting movements
has created more controversy. The failure to incorporate representations of the attractor
landscape and suitable self-organization processes has led dynamical system theorists to
suggest that it may not be possible for individuals to obtain their predicted optimum tech-
nique [1]. The magnitude of errors introduced by this limitation cannot be quantified and
evaluated since a direct comparison to a “true” optimum performance is not possible, and
the various factors limiting individual-specific performance cannot currently be isolated
experimentally. Only predicting the optimal technique for an individual such as a world
record holder with a technique considered close to optimal may come close [4], and even
then, the evaluation results could not be extrapolated to other models of sub-elite athletes.
Forward-dynamics simulation models are unlikely to ever provide a perfect prediction of
optimal technique since they are simplified representations of the human body and are
always likely to incorporate various sources of systematic error. The overall magnitude
of the optimal performance outcome measure should, therefore, clearly be treated with
caution and assessed as part of the iterative model evaluation process [13].

Individual-specific forward-dynamics simulation models of maximum effort sporting
movements have been developed by simplifying the human body mechanical system as
much as possible while maintaining sufficient complexity to address the research ques-
tion [14,34]. Although an identical replication of the human body would be ideal from a
dynamical systems perspective, models are by definition simplifications of the systems they
represent. This has therefore facilitated debate regarding the complexity required to suit-
ably model the constraints [23] and self-organizational processes of the human body [22]
necessary to identify individual-specific optimal technique of maximal effort sporting
movements [1]. While this debate can advance the forward-dynamics simulation modeling
methodology, it should be noted that the hypothetical potential of an individual athlete to
actually achieve their predicted optimal performance provides only an anecdotal assess-
ment of simulation model efficacy. Indeed, direct quantitative comparison of predicted vs.
actual optimum technique is not possible since the purpose of forward-dynamics simu-
lation model optimization is often precisely to predict this unknown and unmeasurable
performance. Where the proposed application is to predict individual-specific optimum
techniques, simulation modeling researchers should therefore continue to consider con-
cerns resulting from dynamical systems theory regarding the complexity of models and
particularly regarding self-organization processes.

The limited range of predominantly planar sporting movements that have been suc-
cessfully simulated is often used as evidence for the difficulty of producing a representative
set of organismic, environmental and task constraints [1]. While the successful represen-
tation of constraints within complex movements is certainly challenging, the results of
existing forward-dynamics simulation models should not be questioned solely on the basis
of the limited number of successful examples in applied sports biomechanics [2]. With
future developments enabling more complex constraints and self-organizational processes
to be employed, it is possible that approaches currently only successful in relatively simple
movements could be expanded to more complex sporting movements.
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In the future, successfully evaluated forward-dynamics simulation models estimating
individual-specific optimal techniques of sporting movements may be used as indicative
rather than predictive tools within a coaching framework to aid applied practice and un-
derstanding [169,170]. The traditional coaching framework for analyzing and prescribing
changes in technique tends to develop primarily via anecdotal evidence from experiential
knowledge or other coaches, as well as scientific knowledge from group-based experi-
mental research results [169,171–173]. The knowledge and understanding used to inform
decisions can be enhanced via forward-dynamics simulation models’ more detailed con-
sideration of individual constraints and processes such as robustness to perturbations.
Applying forward-dynamics simulation models within applied coaching, therefore, has the
benefit of helping to inform and reduce the ongoing predictions expected of coaches [170],
although coaches and individuals should be encouraged to set realistic expectations [174].
The “optimal” technique and performance outcome should not currently be viewed as a
definitively achievable target against which an individual is judged. This may not be strictly
possible to achieve due to potential self-organizational and other constraints. Rather, as
with current coaching processes, the individual should work towards achieving the broadly
indicated and mechanically justified differences in relation to their current technique (e.g.,
in one recent individual-specific example: more extended front ankle and knee joint angles;
increased trunk flexion; a longer delay in the onset of arm circumduction [13]). Coaching
practices necessary to facilitate any alteration in (or search for) technique or coordinative
structures should be explored outside of the simulation literature [175,176]. The debate
between dynamical systems theorists and sports biomechanists who construct and evaluate
forward-dynamics simulation models will continue over the accuracy of individual-specific
optimal techniques and the individual’s ability to achieve them while comparison to a
true optimum remains impossible. Nonetheless, critical evaluation of the constraints and
processes currently employed should inform best practice and future research directions
within the field.

6. Conclusions

This review has critically evaluated forward-dynamics simulation models of maximal
effort sporting movements using a dynamical systems theory framework. Each study
typically follows a four-stage process of model construction, parameter determination,
model evaluation, and model optimization. This review has presented a number of consid-
erations for future researchers at each of these stages. The representation of organismic,
environmental, and task constraints has substantially increased in complexity over recent
years. However, the incorporation of self-organizational processes representing movement
variability and “intrinsic dynamics” remains limited. Researchers should continue to
consider concerns resulting from dynamical systems theory regarding the complexity of
models. In particular, the relevance and application of self-organizational processes should
be explored within forward-dynamics simulation models to predict individual-specific
optimal techniques. Applying this theoretical approach within coaching has the potential
to be an indicative tool to identify broad mechanically justified differences in relation to
an individual’s current technique, provided the assumptions and limitations within this
review are considered.
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