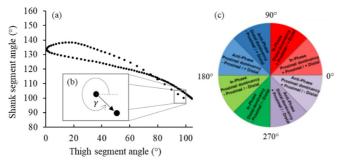
#### Inter-individual Variation in Coordination and Control of Countermovement Jumps

Stuart A. McErlain-Naylor<sup>1</sup>, Robert A. Needham<sup>2</sup>

<sup>1</sup>School of Health and Sports Sciences, University of Suffolk, Ipswich, UK <sup>2</sup>Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, UK

Email: s.mcerlain-naylor@uos.ac.uk

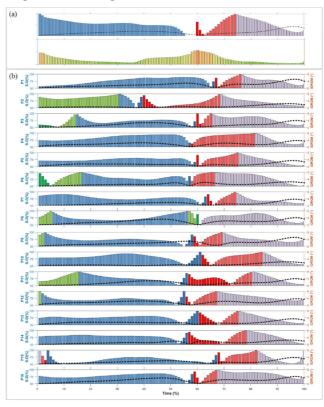
# Summary


A modified vector coding technique was used to quantify coordination and control during countermovement jumps by 16 males. Previously reported group-level coordination patterns were confirmed, although substantial inter-individual variation existed. Patterns of thigh-shank coordination and control were observed corresponding to a 'deep' or 'shallow' countermovement strategy, each used successfully within the cohort.

# Introduction

Coordination patterns during countermovement jumps (CMJ) have previously been described at the group level [1]. Thigh–shank segment coupling showed a general anti-phase and thigh dominated coordination pattern during both the eccentric and concentric phases, except at the transition where an in-phase and shank dominated coordination pattern was observed. However, inter-individual variation in these coordination and control strategies is yet to be explored.

#### Methods


Sixteen males each performed three maximal CMJs, with segmental kinematics recoded via 3D motion capture. For each participant's highest jump, a modified vector coding technique [2] was used to quantify inter-segmental coordination (Figure 1). Readers are directed elsewhere for further information on vector coding, coordination pattern classification, and associated data visualisations [2].



**Figure 1**: (a) angle–angle plot representing thigh and shank segment angles during a CMJ; (b) expanded view of one coupling angle that is assigned to a coordination pattern classification (c) [2].

### **Results and Discussion**

At the group level, previous results [1] were confirmed (Figure 2a): an anti-phase and thigh dominated thigh-shank coordination pattern during both the eccentric and concentric phases, except at the transition where an in-phase coordination pattern was again observed. Inter-individual variation was greatest at movement initiation and transition between concentric and eccentric phases. Coupling angle mapping and profiling techniques highlighted patterns of thigh-shank coordination and control corresponding to a 'deep' (greater inter-data point range of motion, early anti-phase coordination) or 'shallow' (lesser range of motion, early inphase coordination) countermovement strategy (Figure 2b). Both strategies were used successfully within the cohort (*e.g.*, by P1 and P2, respectively). Analysis of alternative segment couples will also be presented and discussed.



**Figure 2**: Coupling angle mapping (coordination pattern classification: colour-scale, Figure 1c), segmental dominancy (bar height, 50-100%) and dominant segment inter-data point range of motion (IDP-ROM: dotted line, 0-8°) profiling of thigh-shank coordination in the sagittal plane: (a) group means (top) and inter-individual coordination variability (bottom); (b) individual participants ordered from highest to lowest jump height.

# Conclusions

Group-level analysis of CMJ coordination and control masks important inter-individual variation in movement strategies.

# References

- [1] Raffalt PC et al. (2016). Hum Mov Sci, 46: 63-77.
- [2] Needham RA et al. (2020). The Foot, 44: 101678.