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Purpose: To summarize the evidence on postactivation potentiation (PAP) protocols using flywheel eccentric overload (EOL)
exercises. Methods: Studies were searched using the electronic databases PubMed, Scopus, and Institute for Scientific
Information Web of Knowledge. Results: In total, 7 eligible studies were identified based on the following results: First,
practitioners can use different inertia intensities (eg, 0.03–0.11 kg·m2), based on the exercise selected, to enhance sport-specific
performance. Second, the PAP time window following EOL exercise seems to be consistent with traditional PAP literature,
where acute fatigue is dominant in the early part of the recovery period (eg, 30 s), and PAP is dominant in the second part (eg, 3
and 6 min). Third, as EOL exercises require large force and power outputs, a volume of 3 sets with the conditioning activity
(eg, half-squat or lunge) seems to be a sensible approach. This could reduce the transitory muscle fatigue and thereby allow for a
stronger potentiation effect compared with larger exercise volumes. Fourth, athletes should gain experience by performing EOL
exercises before using the tool as part of a PAP protocol (3 or 4 sessions of familiarization). Finally, the dimensions of common
flywheel devices offer useful and practical solutions to induce PAP effects outside of normal training environments and prior to
competitions. Conclusions: EOL exercise can be used to stimulate PAP responses to obtain performance advantages in various
sports. However, future research is needed to determine which EOL exercise modalities among intensity, volume, and rest
intervals optimally induce the PAP phenomenon and facilitate transfer effects on athletic performances.
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This review summarizes the current evidence regarding post-
activation potentiation (PAP) strategies using flywheel eccentric
overload (EOL) exercises. The first section covers the PAP phe-
nomenon, its underpinning neurophysiological mechanisms, and
commonly used PAP protocols. The second section describes the
characteristics of flywheel ergometers and the rationale for using
EOL to induce PAP effects. The third section summarizes the
growing literature, which has evaluated the onset, time course, and
magnitude of PAP effects on athletic performance using EOL
exercises. Finally, this review reports some practical recommenda-
tions on how PAP effects can be elicited using EOL exercises in
applied settings and proposes future research directions.

Postactivation Potentiation
PAP is defined as “the phenomena by which muscular performance
characteristics are acutely enhanced as a result of their contractile
history.”1–3 This term is generally used when the enhanced mus-
cular response following a potentiation activity can be verified with
a twitch interpolation technique.2,4,5 However, among sport scien-
tists and coaches, PAP is commonly interpreted as an enhancement
of athletic performance measured in voluntary exercise requiring
rapid or maximal force production.3,6 Two underpinning pathways

are thought to account for the PAP effects: peripheral and central.
Myosin regulatory light chain phosphorylation is suggested to be
the main peripheral mechanism associated with PAP. The aug-
mented phosphorylation of regulatory light chain is mediated via
the enzyme myosin light chain kinase, which leads to a greater rate
of cross-bridge attachment.1,7,8 This is due to an increased sensi-
tivity of the contractile proteins to calcium (Ca2+), which is released
from the sarcoplasmic reticulum.3,9,10 This mechanism facilitates
the force and rate of force development of low- and high-frequency
contractions.11,12

PAP may also result from spinal and supraspinal pathways. It
is speculated that increases in synaptic efficiency induced by
residual elevation of presynaptic Ca2+ and decreases in transmitter
failure occurring at higher order motoneurons are responsible for
fast-twitch motor units.13,14 These central effects may contribute to
a sustained recruitment of higher threshold motor units and in-
creases in fast-twitch fiber contribution to muscular contraction.15

However, a recent review does not support this central explanation
underpinning PAP.2 Hence, it could be concluded that regulatory
light chain phosphorylation is considered the primary mechanism
for PAP, whereas other influences at the central level remain to be
clarified.

Methodological Approaches for PAP Protocol
Design

There are a number of variables that need to be considered when
designing PAP protocols: type of muscular contraction, time
interval between the PAP conditioning activity and subsequent
performance test, biomechanical similarities, and intensity of load.
PAP methods are commonly classified as either static or dynamic,
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according to the muscular contraction mode of the conditioning
activity.1 Examples of static potentiating protocols include isomet-
ric continuous or intermittent maximal voluntary contractions,
while dynamic protocols include loaded jumping, sprinting, throw-
ing movements, and resistance exercises.3 Although both methods
can potentiate subsequent athletic performances, they induce dis-
similar fatigue and potentiation responses. The different nature of
the underpinning PAP mechanisms induced by static and dynamic
methods has specific implications for the methodological design of
PAP protocols. Static PAP protocols implement volumes (1–5
sets × 3–10 s) of isometric contractions executed at high intensity
(>90% maximal voluntary contraction).16–19 PAP protocols using
dynamic contractions require greater volumes and are commonly
designed as multiple-set configurations (2–3 sets × 3–8 repetitions)
and executed at submaximal intensities (60%–90% 1-repetition
maximum).3,9,20–22

Another key variable affected by the specific potentiation
method is the necessary time interval between the PAP condition-
ing activity and the subsequent performance test. Although the
majority of the PAP studies suggest a recovery interval of 3 to
11 minutes to elicit the greatest PAP effect,3 the exact PAP onset
time and duration vary and depend on the type of the conditioning
activity. Isometric contractions evoke PAP earlier (≤3 min) when
compared with dynamic conditions,16,23 which require longer rest
intervals (≥3 min).6 However, PAP effects induced by dynamic
protocols persist for longer durations compared with static proto-
cols and can be maintained up to 12 minutes after protocol
completion.1,24 Thus, it is likely that each potentiation complex
achieves the PAP via different pathways, affecting the onset,
magnitude, and duration of the potentiation effects.7,13,25 Finally,
the contemporary literature recommends practitioners to select
conditioning exercises with biomechanical similarity to the subse-
quent athletic performance intended to improve (eg, squat exercises
for jump tasks or hip thrusts for sprint tasks).15,26–28 Indeed, high
kinematic and kinetic specificity seem to play a favorable role in
optimizing the potentiation effects.6,27

Flywheel Devices and EOL Training

Flywheel ergometers have been present in the scientific literature
since the early 20th century.29 They were developed as resistance
training devices for space travelers exposed to nongravity envir-
onments and became popular in the early 1990s as a tool for high-
intensity resistance training without the requirement for gravita-
tional resistance.30,31 During the concentric phase, the rotational
acceleration of the flywheel develops inertial torque, initially
accumulated, and then returned back during the eccentric phase,
allowing for repetitive concentric–eccentric cycles.32 Skeletal
muscle is able to develop greater forces during eccentric than
concentric activities,33 and such flywheel exercises can determine a
more demanding eccentric phase due to the augmented mechanical
load that necessary to absorb the kinetic energy stored in the
flywheel and to decelerate it. This is not achievable by performing
traditional isotonic weight-lifting exercises.34–36 As a consequence,
flywheel resistance devices allow for maximal force development
throughout the full range of motion, with short periods of greater
eccentric than concentric force demands. This observation has led
to subsequent increased utilization of these devices to obtain acute
responses and chronic adaptations (eg, for strength, hypertrophy,
power, injury prevention, rehabilitation) in both amateur and
professional sporting settings.9,33,37–40 Moreover, because of the
portability of these devices, practitioners can use them outdoors or

bring them out fromweight rooms, further increasing their practical
sporting applications.

Evidence and Hypothesis Supporting EOL Training
as a PAP Strategy

EOL training has been consistently used to induce chronic adapta-
tions; however, a few studies have investigated the acute potentia-
tion benefits offered by this exercise modality.34,41 The rationale for
utilizing flywheel EOL protocols to facilitate PAP responses is
based on the two (central and peripheral) mechanisms underpin-
ning PAP.13 EOL actions, as well as eccentric contractions in
general, are believed to selectively recruit higher order motor units
to a greater extent than concentric contractions.42–46 This results
from higher motor unit discharge rate and synchrony.1,47 This
relatively greater contribution of motor unit activation may be
augmented even more during compound multijoint movements,
commonly executed during EOL exercises (eg, squat).48–50 Further
advantages of EOL exercises as potentiating activities are the
consistently greater eccentric force, power, and derivative outputs
produced.51,52 These greater eccentric kinetic outputs can contrib-
ute to improving stretch-shortening cycle performance, which may
induce stronger transfer effects on the fast, mixed eccentric/con-
centric actions of athletic tasks, such as jumps, sprinting, and
changing direction.51,53 These tasks may benefit from the prior
execution of EOL exercises that functionally overload the muscu-
lotendinous system in a specific manner (eg, eccentric contraction)
and with a high degree of similarity in terms of muscle actions and
joint kinematics used.15,26–28

Current Knowledge Related to EOL Exercise
and PAP

Knowledge on the PAP effects of EOL exercises is relatively new
to the scientific community. The first investigation on this topic was
published in 2014, and 7 studies have examined the PAP effects of
EOL exercises on athletic tasks performance to date (Table 1).9

These studies were identified through searches using PubMed,
Scopus, and Institute for Scientific InformationWeb of Knowledge
databases using the following terms: “eccentric overload,” “eccen-
tric overload exercise,” “flywheel,” “iso-inertial,” “flywheel
resistance,” and “postactivation potentiation.” In addition, the
references of all the identified articles were searched for other
relevant articles.

In the selected studies, changes in performance following PAP
protocols were calculated as percentage differences (%) using the
following formula:

ðpost − PAPi − baselineÞ
baseline

× 100

where i represents any post-PAP assessment time point. Hedges g
effect sizes (ESs) were calculated from the original to examine the
extent of the PAP effects. Specifically, ESs were determined for
each PAP protocol as for within-group analyses and calculated
relatively to baseline or control conditions absent of any PAP
intervention.

The equation d =Mdiff/Sav (Mdiff, mean difference; Sav, average
SD) with the adjustment factor of

g =
�
1 −

3
4df − 1

�
× d

was used for this purpose.
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This approach enabled the estimation of unbiased effects and
standardized comparisons between protocols. ES were then inter-
preted as trivial (<0.2), small (0.2–0.5), medium (0.5–0.8), or large
(>0.8).54,55

Despite the low number of studies, the summary of their
results provides preliminary evidence about methodological
guidelines for practical applications. PAP protocols designed
with flywheel EOL exercises using either single or multiple sets,
performed at varying intensities (0.03–0.11 kg·m2), with brief
rest period durations (3–9 min) seem effective to induce PAP
effects (Table 1).6,9,34,56–59 Moreover, the potentiation was
found to be of a greater extent on athletic tasks having higher
biomechanical similarity with the potentiating EOL exercise.

With regard to the volume of EOL exercise implemented as
PAP protocols, both single and multiple sets can induce potentia-
tion resulting in augmented kinetic outputs (eg, force, impulse,
power) and enhanced athletic performances (eg, vertical and
horizontal jumps, sprints, changes of direction, swimming kick
start).34,56,57 Although no study has specifically compared the PAP
effects of different EOL exercise volumes, this review suggests,
based on previous PAP literature, possible advantages in protocols
using multiple sets compared with a single set.3 This assumption is
supported by the relative greater range of ES on athletic perfor-
mances reported in studies implementing multiple sets (small to
large) compared with those using single-set protocols (small)
(Table 1). Based on the contemporary scientific literature, multi-
ple-set protocols seem relatively preferable, though this interpreta-
tion must be taken with caution. It is known that even the same PAP
conditioning activity and stimulus may induce varying responses
between individuals and on different athletic tasks.3,34

In contrast to traditional PAP methods, where onset, magni-
tude, and duration of the potentiation are modulated by the different
intensities of the conditioning activity, it seems that consistent PAP
effects can be induced by EOL exercises using a broader range of
intensities.3,20,60,61 On one hand, the present review confirms the
relationship between fatigue and PAP and confirms the evidence
that both are present at PAP protocol completion. In fact, EOL
exercises using different inertial loads (eg, 0.03 or 0.06 kg·m2)
initially induce a transient state of fatigue where athletic perfor-
mance is impaired. However, it is interesting to note that following
EOL exercise, PAP outweighs fatigue after relatively short rest
intervals (<6 min) regardless of the exercise intensity. In a recent
study, Beato et al34 compared the PAP effects of “moderate”
(0.03 kg·m2) and “high” (0.06 kg·m2) inertial flywheel half-squat
intensities on countermovement jump, long jump, and change-of-
direction performance. The authors did not find any difference
between the protocols on the onset and magnitude of the resulting
PAP effects; thus, concluding that both exercise intensities may be
used equivalently.

The present review reconfirms exercise specificity and simi-
larity between the potentiation protocol and the subsequent
athletic tasks for exploiting optimal PAP effects following
EOL exercises. This assumption is supported by 2 main observa-
tions. First, greater potentiation ESs were consistently found on
athletic tasks with kinematic characteristics and ground reaction
force orientation profiles similar to those of the EOL exercise.
Most of the EOL exercises used in the reviewed studies were
performed as half-squat movements, which are characterized by a
predominant vertical orientation of the associated kinetic
(eg, ground reaction force) responses. Therefore, it is not surpris-
ing that EOL half squats potentiated vertical-oriented tasks like
squat jumps and countermovement jump to a greater extent (small

to medium) than horizontal-oriented ones like sprinting (trivial)
and change of direction (small).6,34 Second, similarly greater
effects were found on athletic tasks executed as coupled eccen-
tric–concentric movements compared with concentric-only
movements or isokinetic actions.59 Specifically, small to large
effects were reported on countermovement jump performance
following EOL half squats,6,9 whereas the same potentiation
stimulus and rest intervals only induced trivial to small effects
on either swimming kick-start performance58 or isokinetic con-
centric knee extension and concentric and eccentric flexion peak
torque outputs.6 These findings support the rationale of prescrib-
ing potentiating exercises in which muscle actions and joint
kinematic and kinetic profiles are similar to those in the subse-
quent activity to optimize the PAP effects. Nevertheless, this
interpretation must be taken with caution and needs to be further
verified as limited literature currently exists on the topic. Future
research comparing the PAP effects of horizontal- and vertical-
based EOL exercises is needed.

Practical Applications
Implementing EOL exercises is a novel PAP-inducing strategy
that can be used by applied practitioners. Until further research is
conducted to provide precise evidence-based guidelines, the fol-
lowing preliminary practical recommendations can be suggested.
First, EOL using different loads can stimulate similar magnitudes
of PAP response; therefore, practitioners may use a broader range
of inertial intensities (eg, 0.03–0.11 kg·m2) to enhance the subse-
quent athletic performances (eg, countermovement jump, long
jump, change of direction). However, greater intensity may be
accompanied with greater levels of acute fatigue, which should be
considered when planning the rest period between the condition-
ing stimulus and subsequent activity. Second, the rest period
needed following EOL exercises seems to be consistent with
the gravitational loading–based PAP literature: Muscular fatigue
is dominant immediately following the PAP stimulus (up to
3 min), whereas PAP is dominant in the minutes thereafter (after
3 min). Third, as EOL exercises require large force and power
outputs, low volumes (eg, 2–3 sets) of the conditioning activity
seems to be a sensible approach. In fact, higher volumes could
induce greater acute fatigue and potentially delay or even restrict
the onset of the PAP effects on performance. Due to the heavy
eccentric muscular strain and the specificity of the EOL exercises,
it is suggested that athletes gain experience by performing 3 to 4
EOL-conditioning sessions prior to utilizing this training method
as part of a PAP protocol. Furthermore, the dimensions of common
flywheel devices offer useful and practical solutions to induce
PAP effects outside normal training environments and in competi-
tions. Although mobilizing barbells and weight plates can be
challenging, such challenges are minimized with flywheel devices,
making them a logistically excellent PAP-inducing tool for such
situations.

Limitations and Future Directions
A few limitations emerged from the existing literature, which
should be acknowledged and discussed in view of future research
directions. In particular, none of the studies reported in this review
have enrolled professional senior team-sport or female athletes,
which causes uncertainty about the beneficial application of EOL-
based PAP protocols to enhance athletic performances in these
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populations. The potentiation responses induced by traditional
PAP protocols are clearly mediated by the participants’ training
background, strength, and power capabilities. Conversely, there is
no evidence about the concurrent role of individual subjects’
physical characteristics or any of the EOL-related performances
(eg, maximal and average force and power outputs) on the poten-
tiating effects on subsequent athletic performance. These aspects
should be addressed and investigated through dedicated research
designs. In addition, EOL requires large force and power output
during execution; thus, a relatively lower volumes (eg, 3 sets) of the
PAP conditioning activity seem to be a viable approach. This could
also reduce the transitory muscular fatigue and thereby allowing
potentiation effects to be realized earlier (eg, <3 vs >6 min) and to a
greater extent (eg, moderate vs small effects) compared with higher
conditioning volumes (>3 sets), but future research is needed to
clarify this statement. The relatively greater mechanical demands
and the specificity of the EOL exercises also highlight the impor-
tance of longer familiarization periods compared with traditional
resistance exercises before their implementation as PAP proto-
cols.42 Indeed, it may be the case that the PAP effects will increase
with experience gained in performing EOL exercises. EOL exer-
cise is commonly performed through a variety of brands and
flywheel models having different designs, inertial mechanisms,
manufacturing materials, and friction coefficients. This is the main
reason behind the lack of gold standard valid and reliable proce-
dures that objectively determine the magnitude of inertial loads and
associated intensities.

Future studies are warranted to determine which EOL exer-
cise modalities among intensity (inertias), volume (sets and
repetitions), rest interval, and exercise type optimally induce
the PAP phenomenon and enhance athletic performances. For
example, using metrics such as mean velocity, could provide
objective feedback on both concentric and eccentric outputs
during the flywheel exercise for more precise intensity prescrip-
tion and monitoring. This could also enable relative intensities to
be quantified between athletes or within athlete at a given inertial
load. Another research direction worth perusing is the usefulness
of self-regulating the output produced with flywheel devices to
better manage accumulating fatigue and, thus, to optimize the
PAP response. Furthermore, in all studies, the same PAP-induc-
ing exercise (half squats and lunges) was utilized. It would thus be
of value to study other exercises (eg, horizontal dominant) as well
in future studies. Finally, only 2 studies compared EOL to
traditional gravitational resistance protocols as the PAP-inducing
modality. Given the extensive knowledge of gravitational resis-
tance exercise on PAP, a comparison of EOL to such exercise
would shed further light on the overall usefulness of EOL as a tool
to induce PAP.

Conclusions
EOL exercises performed through inertial flywheel devices can be
used as an alternative PAP method to acutely potentiate athletic
performance. This review describes the theoretical rationale of
using EOL exercises to induce potentiation effects and the under-
pinning mechanisms favoring enhanced performance. The contem-
porary literature provides preliminary methodological guidelines
for coaches and practitioners intending to design PAP protocols by
using EOL exercises. Future research is required to clarify the acute
effects induced by EOL exercises in order to optimize their use as a
PAP methodology in sport.
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